Using box_select to Return a Filtered Dataframe

Hello,

The following code produces an interactive plot with three range sliders (.csv file is attached):

import numpy as np
import pandas as pd
import holoviews as hv
import panel as pn
import hvplot.pandas
pn.extension(sizing_mode='stretch_width')

df = pd.read_csv('df_demo_small.csv')
df['date'] = pd.to_datetime(df.date, infer_datetime_format=True, format="%Y-%m-%d %H:%M:%S")

date_range   = pn.widgets.DateRangeSlider(name='Date Range', start=df.date.iloc[0], end=df.date.iloc[-1], step=60*60*1000)
feat_1_range = pn.widgets.RangeSlider(name='Feature 1', start=df.feat_1.min(), end=df.feat_1.max(), value=(df.feat_1.min(), df.feat_1.max()))
feat_2_range = pn.widgets.RangeSlider(name='Feature 2', start=df.feat_2.min(), end=df.feat_2.max(), value=(df.feat_2.min(), df.feat_2.max()))

idf = df.interactive()
filtered_idf = idf[
    (idf['feat_1']   >= feat_1_range.param.value_start) &
    (idf['feat_1']   <= feat_1_range.param.value_end)   &
    (idf['feat_2']   >= feat_2_range.param.value_start) &
    (idf['feat_2']   <= feat_2_range.param.value_end)   &
    (idf['date']     >= date_range.param.value_start)   &
    (idf['date']     <= date_range.param.value_end)]

iplot = filtered_idf.hvplot('comp_1', 'comp_2', kind='points', c='label', s=250, alpha=0.15, width=1000, height=800, tools=['box_select'], hover_cols=['feat_1', 'feat_2'], xlim=(-20, 15), ylim=(-2, 15))

pn.Column(
    pn.Row(
        date_range, feat_1_range, feat_2_range
    ),
    iplot.panel()
)

My question is how to use the “box_select” tool to make a selection on the plot and then return a filtered dataframe with only the selected data?

Thanks in advance for any help!
df_demo_small.csv (1010 Bytes)

1 Like

Hi @cdtennant

You would use the BoundsXY stream. I don’t know how to use it on a plot created via the .interactive api (@philippjfr, what is the best way to do this?). But I can do it via Panels pn.bind api.

Check out the live app or share your own version.

discourse4582

import numpy as np
import pandas as pd
import holoviews as hv
import panel as pn
import hvplot.pandas
from holoviews import streams
from io import StringIO

pn.extension(sizing_mode="stretch_width")

CSV="""\
date,comp_1,comp_2,label,feat_1,feat_2
4/1/2022 0:00,12.3537,0.8192,good,78.94,124.78
4/1/2022 1:00,12.5387,0.8112,good,53.92,122.73
4/1/2022 2:00,12.4846,0.9496,good,70.91,124.03
4/1/2022 3:00,12.5030,0.8074,good,85.90,121.13
4/1/2022 4:00,12.4584,0.7773,good,51.66,123.55
4/1/2022 5:00,12.3370,1.0164,good,93.88,121.32
4/1/2022 6:00,12.3221,0.9623,good,64.15,122.10
4/1/2022 7:00,12.3640,1.0885,good,28.28,123.27
4/1/2022 8:00,13.3045,0.2689,good,25.13,121.45
4/1/2022 9:00,13.2106,0.2591,good,84.35,122.39
4/2/2022 1:00,-17.5646,13.9261,bad,28.30,124.82
4/2/2022 2:00,-17.5749,13.9354,bad,90.55,123.00
4/2/2022 3:00,-17.5770,13.9370,bad,67.88,123.92
4/2/2022 4:00,-17.6055,13.9652,bad,57.61,124.74
4/2/2022 5:00,-17.5726,13.9330,bad,70.61,124.36
4/2/2022 6:00,-17.4796,13.8359,bad,54.23,124.73
4/2/2022 7:00,-17.4407,13.7976,bad,76.09,121.82
4/2/2022 8:00,-17.4092,13.7663,bad,32.92,121.38
4/2/2022 9:00,-17.4462,13.8017,bad,90.20,121.76
4/2/2022 10:00,-15.3808,5.4642,bad,25.75,121.92
"""

df = pd.read_csv(StringIO(CSV), parse_dates=["date"])

def get_plot(date_start, date_end, feat_1_start, feat_1_end, feat_2_start, feat_2_end):
    filtered_df = df[
        (df["feat_1"] >= feat_1_start)
        & (df["feat_1"] <= feat_1_end)
        & (df["feat_2"] >= feat_2_start)
        & (df["feat_2"] <= feat_2_end)
        & (df["date"] >= date_start)
        & (df["date"] <= date_end)
    ]

    return filtered_df.hvplot(
        "comp_1",
        "comp_2",
        kind="points",
        c="label",
        s=250,
        alpha=0.15,
        responsive=True,
        height=400,
        tools=["box_select"],
        hover_cols=["feat_1", "feat_2"],
        xlim=(-20, 15),
        ylim=(-2, 15),
    )


date_range = pn.widgets.DateRangeSlider(
    name="Date Range", start=df.date.iloc[0], end=df.date.iloc[-1], step=60 * 60 * 1000
)
feat_1_range = pn.widgets.RangeSlider(
    name="Feature 1",
    start=df.feat_1.min(),
    end=df.feat_1.max(),
    value=(df.feat_1.min(), df.feat_1.max()),
)
feat_2_range = pn.widgets.RangeSlider(
    name="Feature 2",
    start=df.feat_2.min(),
    end=df.feat_2.max(),
    value=(df.feat_2.min(), df.feat_2.max()),
)

iplot = pn.bind(
    get_plot,
    date_start=date_range.param.value_start,
    date_end=date_range.param.value_end,
    feat_1_start=feat_1_range.param.value_start,
    feat_1_end=feat_1_range.param.value_end,
    feat_2_start=feat_2_range.param.value_start,
    feat_2_end=feat_2_range.param.value_end,
)

source = hv.Curve({})
boundsxy = streams.BoundsXY(source=source, bounds=(0, 0, 0, 0))

@pn.depends(boundsxy.param.bounds)
def data_view(bounds):
  if bounds==(0,0,0,0):
    return "Please select some points using the BoxSelect tool"
  x_start, y_start, x_end, y_end = bounds
  return df[
    (df["comp_1"].between(x_start, x_end)) &
    (df["comp_2"].between(y_start, y_end))
  ]
  return bounds

component = pn.Column(
    pn.Row(date_range, feat_1_range, feat_2_range),
    hv.DynamicMap(iplot) * source,
    data_view,
)

pn.template.FastListTemplate(
    site="Awesome Panel Sharing",
    site_url="https://awesome-panel.org/sharing",
    favicon="https://raw.githubusercontent.com/MarcSkovMadsen/awesome-panel-assets/320297ccb92773da099f6b97d267cc0433b67c23/favicon/ap-1f77b4.ico",
    title="HoloViews BoundsXY in action",
    main=[component],
).servable()
2 Likes

Thank you very much @Marc! As a new user, I’ve been working through the HoloViz tutorial (HoloViz Tutorial — HoloViz 0.15.1 documentation) which led me to use the .interactive api. I was not aware of the pn.bind api. Is there a tutorial - or broad overview - available for using the latter? Thanks.

P.S. When I copy your code block and run it locally in a Jupyter notebook, I get the output shown in the attached image. Any idea what’s going on?

Hi @cdtennant,

Try .show() instead of .servable(), the templates aren’t supported in a notebook cell like some other parts I think that is why you’re getting the skewed display. Pending how you have everything setup in lab it might work with .servable() I think there’s a button you can press to bring it up in another page in the lab ide but .show() will bring it all up in another tab on your browser and should look ok then

2 Likes

@carl, yes modifying it to .show() worked. Thank you.

1 Like